
(Refer Slide Time: 14:33)

So, basically the micro-programmed control unit ensures that the signal will be generated in

correct sequence. So, sequencing here is a bit tricky, because generating control signals is

directly they are encoded, directly they are actually put in the memory location. So, if you

generate if you just take cell 1 memory row 1 memory row 2, memory 3 automatically control

signals are generated as default because, they are already stored in the memory.

Sequencing is actually very important here because, many times we will depend on the

condition codes and status flags. Based on some storage that is some signal from the memory

WMFC based on some case like some interrupt etcetera. Because of some case and also some

status flag like zero flag, carry flag so all these things we must take into picture, and then you

have to decide whether it will be the next phase, or it will go to some other instruction which

is not consecutive.

So, you have to have also arrangement for something called a branch decision. So, in right

normal programs we have micro instructions where actually which is conditional, and also, we

have something which is unconditional. In conditional it is required to specify the address of

the micro-program memory where the control must direct. So, means if it is some condition is

not true you will go here, that is the next stage. But, if it is true you go from here to here, but

then you have to actually tell what is the address. So, that part is quite obvious, but in this case,

you have to tell the address of the micro-program memory, of course that is because that it is

true because, you are executing in a micro-program memory

665

So, micro-program memory architecture and normal memory architecture there is not much

difference, they are almost the same thing. But, we are allocating some part of the micro-

program memory when you have the micro programs or the micro instructions corresponding

to the macro instructions. We will take with example then it will be easy, like for example if

you have some instructions called 𝐴𝐷𝐷 𝑅1 𝑅2. So, first is first phase is called the fetch an

instruction.

So, we have discussed many many times that for most of the instruction fetch phase is similar.

So, whenever instruction has to be fetched the sequence of micro instructions is always similar.

So, whenever instruction has to be fetched you can directly invoke that part of the memory,

micro-program memory which has the micro instructions corresponding to fetch.

After that the add will be decoded, and then different types of activities has to take place. So,

whenever 𝐴𝐷𝐷 has been decoded, then it is a register to register operation, then the instruction

or the micro instructions which is stored in the micro-program memory corresponding to 𝐴𝐷𝐷

register to register that will be invoked.

So, that series of micro instructions will execute, which will actually execute 𝐴𝐷𝐷 which is

from register to register operation, and then it will go slow. So, we will take some examples

then it will be more clear. For the time being let’s take the fact that instruction fetch, decode

and execute.

So, fetch everything is similar. So, whenever a new instruction has to be fetched, ah fetch block

of micro instructions which corresponds to its memory fetched will be invoked. Invoke means

micro-program counter will start pointing to the first microinstruction, which corresponds to

instruction fetch.

Then, when instruction fetch is done then you are decoding in the instruction register, and then

accordingly it will tell that it’s a 𝐴𝐷𝐷 instruction which is from register 𝑅1 to 𝑅2 that is

basically register to register instruction. So, corresponding microinstruction corresponding

𝑀𝑃𝐶 will start point to the micro-program address or micro-program memory address. Where

you have the micro-program corresponding to 𝐴𝐷𝐷 𝑅1, 𝑅2 then it will end again other steps

will follow.

So, that is what has been actually is the job of a micro-programmed control unit. So, apart from

branch address these micro programs can specify which status flags conditions etcetera has to

666

be taken for the condition check. So, that that means, in a very nutshell basically you just go

micro-program counter increases one by one, but whenever there is a condition which depends

on the input, depends on the flags, depends on some I/O input. Which is which you get it from

I/O device then all these conditions has to be checked, and then the micro-program control

sequence will tell the micro-program program counter that whether this is the next, or whether

you have to go to some other memory location of the micro-program, and then you have to tell

exactly which location to go.

So, that part has to be a part of the sequencing circuit logic for micro-program control ok.

(Refer Slide Time: 18:42)

So, what I was saying you can just read in this slide. Basically, we have every instruction has

2 parts called fetch and execution phase. Execution phase means, here I am telling that decode

do the operation and store. So, basically all for all instruction phase fetch phases is similar.

So, whenever a new instruction has to be executed first actually micro-program corresponding

to fetch will be executed. So, the micro-program is stored in a specific location in the micro-

program, and execution starts from the memory location maybe we have a this is a micro-

program memory, maybe this part is reserved for the instructions micro instructions

corresponding to fetch. So, whenever a new instruction has come your 𝑀𝑃𝐶 will point to this.

So, whenever this instruction is completed that is 3 or 4 micro instructions to for fetch is

completed, then again, the 𝑀𝑃𝐶 will start pointing to some xyz position. So, it will come here

and it will end and it will now the floating.

667

Now, the instruction decoder basically that is the instruction decoder will have the instruction

like 𝐴𝐷𝐷 𝑅1 𝑅2 store or something, then it will decode. And find out what is the instruction it

corresponds to, maybe it is a 𝐿𝑂𝐴𝐷 instruction, then again accordingly the micro-program

counter will start pointing to that location in the micro-program, which is the first instruction

micro instructions correspond to that particular instruction. It is 𝐴𝐷𝐷 𝑅1 𝑎𝑛𝑑 𝑅2 so, this will

corresponds to the micro instruction starts where the micro instruction starts which corresponds

to 𝐴𝐷𝐷 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 𝑡𝑜 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟.

If the 𝑆𝑇𝑂𝑅𝐸. So, it may be pointing to some other location in the micro-program which

corresponds to the start address of the micro-program which corresponds to 𝐿𝑂𝐴𝐷 or 𝑆𝑇𝑂𝑅𝐸.

So, basically this is how it actually happens. That is for any instruction the first phase is similar

that is the fetch, and then after that based on the instruction type which is decided by the

instruction register, it will take the 𝑀𝑃𝐶 value to corresponding position in the micro-program

memory where the micro-program corresponds to the instruction sits.

(Refer Slide Time: 20:42)

So, now, if you look at this slide which actually tells in more formal manner which I was saying

that during the execution of a micro-programmed control, the 𝑀𝑃𝐶 is always incremented. So,

it go excepting the branch condition is that this is very obvious that, whenever there is a branch

it will go to other place or 2 other cases basically it does not always increment, when an end

instruction is encountered. So, what is an end instruction? Basically, say for example, as I told

668

you fetch is a default it means, default sequence that is to be executed whenever any instruction

has to be taken from the memory and execute.

So, whenever an instruction is there which has to be executed basically it pass might the micro-

program corresponding to fetch is 𝑀𝑃𝐶 points to that part and whenever the fetch instruction

set is micro instructions are over or you go to an end of a micro-program then actually then it

does not go ahead; obviously, because maybe these 3 micro instructions are required for fetch.

So, after that this part actually ends for that micro instruction

So, whenever it ends then it has to again wait whenever it reaches the end instruction it does

not go that is obvious. Basically if you take an instruction like 𝐴𝐷𝐷 𝑅1 𝑎𝑛𝑑 𝑅2. So, that is the

macro instruction it will have many small small micro instructions programs for that like fetch

will comprise for one micro-program then 𝐴𝐷𝐷 𝑅1 𝑎𝑛𝑑 𝑅2 after decoded it is executed that is

𝑅1 and 𝑅2 had to be executed and it has to be written in 𝑅1.

So, basically that part will comprise of the second micro instruction program. So, basically

when the fetch is over it will go to the n instruction of the micro-program and of course, 𝑃𝐶

will be 𝑀𝑃𝐶 will not increment. It will be blank, then basically that 𝑀𝑃𝐶 will now, start

pointing to the next instruction basically which corresponds to that macro program, like for

example, if 𝐴𝐷𝐷 𝑅1 𝑎𝑛𝑑 𝑅2 it will start pointing.

So, whenever it reaches the end of one micro instruct instruction program. So, it will again

MPC will not be incremented, it will be waiting for the corresponding opcode that is the

instruction register will tell basically where it has to point is corresponds to the particular

instruction. So, at that time it is not incremented it waits basically when there is a jump

instruction of course, the condition will tell you that where you have to jump.

So, at the end of the micro-program the 𝑀𝑃𝐶 points to the starting address of the micro-

program for the instruction which is presently in the 𝐼𝑅. So, basically these are the 2 cases this

is case 1 and this is case 2 when we do not increment. For all other cases basically we increment

the micro-program program counter. One condition is branch that is obvious, and another

condition is basically, for a given instruction there may for a given instruction is implemented

by 2 or multiple micro programs.

So, whenever one micro-program is over then, you have to wait for the other and that one will

be told that one micro-program phase is over which is the next micro-program to be executed

669

that will be told by the instruction register, like if we 𝐴𝐷𝐷 𝑅1, 𝑅2 the execution will start from

a different part if it is 𝐿𝑂𝐴𝐷 𝑅1, 𝑅2, then it will be a different way. So, based on different

instructions basically what are the execution part that is going to tell you which micro-program

has to be executed for that.

So, in these 2 cases basically the micro-program, program counter has to be loaded one by the

branch case and one by the instruction register.

(Refer Slide Time: 23:58)

So, basically this is what in a nutshell we have seen micro-program, for a given program the

macro code there is a sequence of micro programs like for example, if I take a macro instruction

like 𝐴𝐷𝐷 𝑅1 𝑅2. It will have corresponding defined micro programs which will execute it, and

the micro programs actually execute exists in different parts of the micro-program memory.

So, basically what we our job is to do you have to actually generate this control signals, and

you have to generate the address of the control memory in the next step, that is we have to do

the sequencing that is what the jobs are. So now, we will see how basically a micro-program is

organized which has to do these things, one is the control signal generation and second is the

how we can do the proper sequencing in this case again repeating control signal generation is

very simple. Because, we have a memory and in all the memory actually memory bits you store

the required signals which has to be made 0 and 1.

670

(Refer Slide Time: 24:54)

So, basically, whatever I was telling you can read in this in this slide. Basically, if there is

branch then there are 2 cases in which you have you cannot go sequentially when one micro-

program ends and in one case there is a branch instruction. So, in this case basically you have

to think of actually next address to go otherwise 𝑀𝑃𝐶 is just incremented.

(Refer Slide Time: 25:14)

So basically, now if you think basically this will be your program micro program. So, basically

the micro-program is nothing but they are all some parts of a memory. So, I am filling the

values 0110 something like this has been filled. Now, I have to reserve some part here and

671

some part I will tell you why these things are to be reserved, because otherwise it will go in

sequence. It will keep on going in sequence one after another first this location this location,

this location and so on.

Now, somehow say that if I want to say that I want to go from this memory location to this

memory location. That value that is this is the present state next state I have to go not this but

this some other memory location. So, another some part of the memory here will be telling that

what is the next place that is the address. That is the address of the next location which the

micro-program has to go, if some condition is satisfied. So, another part we have to keep for

some conditional variable. That is based on some conditional variables the may be these are

variables which has to be checked means, I am just filling in the basic gist. In a few slides we

will see the more concretely how this is to be designed.

So, basically this one will go in this manner, but 2 and these are basically nothing but you

control signals 011011. Some part of the memory I will reserve at the next address register, if

I say that it will be xx or 00 or something then it will say that I have to default go to the next

instruction. But, if I say that some values are there may be 1011 some coding is there which

will tell maybe 101; that means, it will tell that the next instruction is not this 1, but it has to go

to 101. If some condition based on this memory location holds maybe if you say that 00. It tells

that no condition has to be checked it will directly go to 1 that is default jump to memory

location 11.

But, sometimes you may say that 01 and 101 and this 01 may correspond to saying that

basically the carry flag should be 1. So, if the carry flag is 1 then you jump to 101 else you

increment. So, the, this is the way a micro-program memory will look like. You will have one

part which is the most important part of it that is the control signal. Some part you have to

reserve for the conditions which you have to check we can say 00 or x x; that means, no

condition has to be checked, and you can also say xx; that means, no condition has to be check

nothing you just increment.

But, if I put some values over here it may mean that that condition if it holds then only this

condition this is the newer location we have to jump, or you have if the, it does not hold you

again go over here. So, basically apart from this control you should also have to store, where

should be the next memory location and what should be the condition?

672

(Refer Slide Time: 27:58)

So, as this is not a finite state machine. So, in case of a finite state machine basically you can

have some conditions, and the sequencing actually is maintained. Like if this is the case you

go over and if this is the case you go over.

So, this condition checks are put in these transitions and this destination and this destinations

are denoted by the states. So, here we do not have any kind of straight structure. So, one part

of the memory we reserved for checking the conditions, and another part of the memory we

say that do you want to go over here, or do you want to go over here.

So, that basically you want go over here means default the next, but this may not be the next

instruction. So, to go to that state, so location of this also has to be stored in the memory. So,

to match this condition and the jump address to this we have basically the memory has 3 parts

this is for your control signals, this is maybe for your and next address and this corresponds to

your check of the condition. So, the memory has to be basically divided.

So, that is if the present instruction requires a jump, then the address of the jump in the memory

location is stored in the branch address field that is what I was saying.

673

(Refer Slide Time: 29:08)

Basically, that means this is the whole instruction. So, if you have to jump. So, this is going to

be your address where it has to jump, but that is at this part is actually called the branch address

field.

So, therefore, you have to explicitly mention in the instruction itself, that if some condition is

true you have to go to this address. If the condition is not required or you need not jump from

the instruction by any means you can put it’s a default variable. If the jump unconditional this

is actually called the condition select field this is actually called the condition select field of

course, because the jump etcetera will happen based on some condition. So, as I told you can

have different encodings that if the control has to be on some flags, or some inputs from the

I/O devices that you can mention by some code over here.

So, if it is unconditional jump then, you can make 𝑐 = 00 some coding you can give then it

will not check anything, but directly jump to from this instruction similarly, if you do not want

to have any jump in this case so, you can have some these are the xxx and this will be some

arbitrarily encoding like 000 and 000. In such case it will directly go to this one without having

to think about it. So, basically this micro-program actually has one part of the address, which

is the, which one part of the memory, which is actually called or in a row. Basically in a memory

word one part will generate your control signal one part will be basically for the control select.

That is the depending on what you have to take decision and one will be actually the branch

address field. So, basically there are 3 parts.

674

